vision blog
,




lastvisits
visitor like
Search Engine


Dear visitor of the vision blog , this topic John von Neumann has been prepared and chosen. Information last updated on today 13/05/2022

John von Neumann

last update since 6 Day , 21 hour
12016 view

Topic Elements

explicación simple


Un article de Wikipédia l'encyclopédie libre


Biographie



Famille

Aîné d'une fratrie de trois János Neumann naît à Budapest dans une famille d'origine juive de Margit Kann et de Miksa Neumann un avocat originaire de Pest qui deviendra le conseiller juridique principal puis le directeur de la Banque de crédit et d'hypothèque hongroise. Miksa Neumann est anobli le 1er juillet 1913 et intégré à la noblesse hongroise avec le prédicat de Marghita (marghitai Neumann en hongrois ; Neumann von Marghita en allemand). Les enfants Neumann grandissent dans une famille qui côtoie et reçoit chez elle l'élite intellectuelle hongroise et où l'on discute autant sciences musique et théâtre que littérature. János et ses deux jeunes frères Mihály (1907°) et Miklós (1911°) apprennent ainsi en plus du hongrois l'allemand et le français dès leur plus jeune âge. Intellectuels liés au mouvement des Lumières juif (la Haskala) le jeune Neumann ne prête guère attention à ses origines juives sinon pour son répertoire de blagues .


Enfance

János est un enfant prodige : à deux ans il sait lire ; à six ans il converse avec son père en grec ancien et peut mentalement faire la division d'un nombre à huit chiffres . Une anecdote rapporte qu'à huit ans il a déjà lu les quarante-quatre volumes de l'histoire universelle de la bibliothèque familiale et qu'il les a entièrement mémorisés : Il aurait été capable de citer de mémoire des pages entières de livres lus des années auparavant. Il entre au lycée luthérien de Budapest (Budapesti Evangélikus Gimnázium) qui était germanophone en 1911.

En 1913 son père achète un titre nobiliaire austro-hongrois et le jeune Neumann János devient margittai Neumann János puis prend le nom Johann von Neumann qui sera anglicisé dans les années 1930 en John von Neumann au moment de l'émigration aux États-Unis (alors que ses frères choisiront pour patronymes Newman et Vonneumann).


Études et période allemande

C'est âgé d'à peine 22 ans qu'il reçoit son doctorat en mathématiques (et en physique expérimentale et en chimie comme matières secondaires) de l'université de Budapest. En parallèle il obtient un diplôme en génie chimique de l'École polytechnique fédérale de Zurich (à la demande de son père désireux que son fils s'investisse dans un secteur plus rémunérateur que les mathématiques ) et aussi sur les conseils de Theodore von Kármán. Neumann ne fréquente ces deux universités que pour passer les examens. Il est le major de sa promotion pour les deux universités.

Entre 1926 et 1930 il est le plus jeune au monde à recevoir à 25 ans le titre de privatdozent à Berlin et à Hambourg. Il reçoit une bourse de la fondation Rockefeller pour travailler également à l'université de Göttingen — à l'époque capitale mondiale des mathématiques et de la physique théorique — avec Robert Oppenheimer sous la direction de David Hilbert . Durant cette « période allemande » l'une des plus fécondes de sa vie il côtoie également Werner Heisenberg et Kurt Gödel.


Princeton

En 1930 Neumann est professeur invité à l’université de Princeton. Il dispense des cours pendant peu de temps entre 1930 et 1933[N 1].

De 1933 à sa mort en 1957 il est professeur de mathématiques à la faculté de l'Institute for Advanced Study qui vient d'être créée. Il est alors le plus jeune professeur de cette institution où des personnalités telles Albert Einstein Kurt Gödel Paul Dirac et Alan Turing ont leur bureau. Pendant les années précédant la guerre il se consacre à la recherche fondamentale. En collaboration avec Garrett Birkhoff il publie en 1936 La logique de la mécanique quantique et entre 1936 et 1937 à l'Institute for Advanced Study de Princeton Continuous Geometry qui va jeter les bases du développement de la théorie des treillis.

En 1937 il est naturalisé américain l'année même où il commence sa collaboration avec le Laboratoire de recherche balistique (Balistic Research Laboratory)


Deuxième Guerre mondiale et guerre froide

La guerre devenant inévitable il s'oriente vers les mathématiques appliquées (statistiques analyse numérique balistique détonique hydrodynamique). Il développe la méthode de Monte-Carlo pour faire l'économie de temps de calcul et participe à la création des premiers ordinateurs pour raccourcir ce temps de calcul qui devient une ressource essentielle de la guerre moderne.

À partir de 1940 et jusqu'à sa mort il est membre du comité consultatif scientifique du Ballistic Research Laboratory (laboratoire en recherches balistiques de l'US Army). De 1943 à 1955 il est consultant scientifique au laboratoire national de Los Alamos et participe au projet Manhattan calculant notamment la hauteur optimale de l'explosion pour assurer un impact optimum . Il entame ses travaux sur la logique probabiliste au lendemain d’une conférence Macy en 1946 où Walter Pitts avait présenté les modèles biologiques. Plus tard avec Pitts et Warren McCulloch il introduit une notion d’aléatoire dans les réseaux de façon à les rendre capables de fonctionner en présence d’erreurs et de bruits affectant les calculateurs élémentaires et leurs connexions. Il inspirera au cinéaste Stanley Kubrick le personnage du Docteur Folamour .

En 1952 il devient membre du Comité consultatif général (General Advisory Committee) de la Commission américaine à l'énergie atomique (United States Atomic Energy Commission) dont il prend la direction en 1955. Il est l'un des théoriciens de la guerre froide et de la destruction mutuelle assurée. En 1956 peu avant son décès il reçoit le prix Enrico Fermi.


Mort

À la fin de sa vie von Neumann est confronté à deux conséquences de son engagement dans la phase destructrice de l'énergie nucléaire l'une d'ordre psychologique l'autre d'ordre physique. La première se traduit par un pessimisme croissant[N 2]. La seconde conséquence est qu'il souffre d'un cancer probablement le résultat d'un contact prolongé avec des sources radioactives lors de travaux sur des armes nucléaires au Laboratoire national de Los Alamos ou lors d'essais sur la bombe A auxquels il a assisté dans le Pacifique. Ceci ajouté à un excès de confiance qui le conduit à ne jamais respecter les mesures de sécurité requises .

Il meurt en 1957 à l'âge de 53 ans dans l'hôpital militaire du Walter Reed Army Medical Center d'un cancer des os ou du pancréas . Son lit d'hôpital est sous haute surveillance militaire car on craint que fortement drogué pour supporter la douleur il ne divulgue accidentellement des secrets militaires dont il a eu connaissance. Il est inhumé dans le cimetière de Princeton (en).


Honneurs et récompenses



Honneurs

Le 16 février 1956 le président Eisenhower le décore de la médaille de la Liberté pour sa précieuse contribution dans le domaine de la sécurité des États-Unis .
Un cratère sur la lune ainsi que l'astéroïde (22824) von Neumann portent son nom.

Récompenses

L'IEEE décerne chaque année une médaille en l'honneur de von Neumann la IEEE John von Neumann Medal .
Le prix de théorie John-von-Neumann de l'Institute for Operations Research and the Management Sciences (INFORMS) récompense chaque année un individu ou un groupe pour des contributions fondamentales en recherche opérationnelle et en science du management.
La Société pour les mathématiques industrielles et appliquées (SIAM) décerne annuellement depuis 1959 un prix intitulé la Conférence von Neumann attribué aux Français Jean Leray en 1962 René Thom en 1976 et Jacques-Louis Lions en 1986.
Un institut universitaire situé à Hô Chi Minh-Ville a été rebaptisé en son honneur en avril 2014 .


Opinions politiques et vie privée


Von Neumann professe un anticommunisme combatif. Il collabore au complexe militaro-industriel américain est consultant pour la CIA et la RAND Corporation. Il consacre une grande partie de son temps à des questions apparemment éloignées des sciences pures mais dans des cercles — comme la Rand Corporation — où des scientifiques peuvent trouver tous les moyens nécessaires dont financiers pour laisser libre cours à leur imagination et mener à bien des projets scientifiques qui auraient été entravés autrement.

Neumann est aussi un bon vivant dont on dit qu'il sait tout compter sauf les calories qu'il ingurgite. Il aime plaisanter et raconter des blagues salaces. Il regarde les jambes des femmes avec une telle insistance que certaines des secrétaires à Los Alamos mettent un carton ou une feuille de papier protectrice devant leur bureau . Il aurait proposé le mariage à sa première épouse en remarquant : « On sera capables de s'amuser tous les deux vu à quel point on aime boire » .

Il se marie une première fois en décembre 1929 avec Mariette Kövesi[N 3] avec laquelle il a une fille Marina née en 1935 qui deviendra plus tard professeur à l'université du Michigan et conseillère économique du président Nixon. Les années précédant la guerre sont mouvementées sur le plan professionnel et personnel. Deux ans après leur mariage sa femme tombe amoureuse du physicien J.B. Kuper. Elle quitte donc von Neumann en emmenant sa fille Marina au Nevada en vue de divorcer plus facilement. Les motifs invoqués par Mariette pour obtenir la séparation sont l'abus et la cruauté. Ces deux traits de caractère ont parfois été repris pour dénoncer les défauts et le manque de stabilité émotionnelle de von Neumann. Ils divorcent en 1937 mais conservent toujours une relation cordiale[N 4].

À l'automne 1938 il se rend dans sa ville natale pour y retrouver une de ses anciennes maîtresses une femme qui bien qu'issue d'une famille bourgeoise n'a aucune difficulté à obtenir le divorce et lui faisant part de son inquiétude face à la situation politique veut au plus vite émigrer aux États-Unis. John von Neumann épouse Klara Dan à Budapest le 17 novembre 1938 et traverse une dernière fois l'Europe pour embarquer à bord du Queen Mary .


Citations


« Si les gens ne croient pas que les mathématiques sont simples c’est uniquement parce qu’ils ne réalisent pas à quel point la vie est compliquée[N 8]. »

« En mathématiques on ne comprend pas les choses on s'y habitue[N 9]. »


Contributions



À la logique mathématique

L'axiomatisation des mathématiques sur le modèle des éléments d'Euclide atteint des nouveaux degrés de rigueur et de profondeur à la fin du XIXe siècle en particulier en arithmétique avec Richard Dedekind et Giuseppe Peano et en géométrie avec David Hilbert. Au tournant du XXe siècle en revanche la théorie des ensembles la nouvelle branche des mathématiques créée en particulier par Georg Cantor est fortement ébranlée par la découverte de paradoxes par Cantor lui-même Cesare Burali-Forti et Bertrand Russell. En 1897 Burali-Forti découvre qu'il ne peut y avoir d'ensemble de tous les ordinaux sous peine de contradiction ; Russell publie en 1903 son célèbre paradoxe au sujet des ensembles qui n'appartiennent pas à eux-mêmes.

Au cours des vingt années qui suivent Ernst Zermelo puis Abraham Adolf Fraenkel et Thoralf Skolem montrent comment axiomatiser la théorie des ensembles de façon à éviter les paradoxes connus tout en permettant la construction d'ensembles effectivement usités en mathématiques en particulier les constructions de Cantor. Ceci aboutit finalement à la théorie ZFC (théorie de Zermelo-Fraenkel avec axiome du choix). Cependant ils n'excluent pas la possibilité d'ensembles qui s'ils ne sont pas paradoxaux semblent contre-intuitifs comme les ensembles qui appartiennent à eux-mêmes. Dans sa thèse de doctorat von Neumann énonce l'axiome de fondation qui exclut en particulier cette éventualité et permet surtout de hiérarchiser l'univers des ensembles. Il propose également la théorie des classes une reformulation de la théorie ZFC qui permet de parler de collections d'objets qui ne sont pas nécessairement des ensembles de façon adéquate à une notion restée assez informelle chez Cantor. Cette théorie a ensuite été améliorée par Paul Bernays puis par Kurt Gödel. Elle est désormais connue sous le nom de théorie des ensembles de von Neumann-Bernays-Gödel (en abrégé NBG).

Pour simplifier on dira que l'axiome de fondation précise que les ensembles doivent être construits progressivement en partant de l'ensemble vide de sorte que si un ensemble A appartient à un ensemble B alors B ne peut pas appartenir à A. Afin de prouver que l'addition de ce nouvel axiome n'engendre pas de nouvelle contradiction (du type de Russell) von Neumann introduit une nouvelle méthode de démonstration la méthode des modèles internes qui fut illustrée ensuite par Gödel pour montrer la cohérence relative de l'hypothèse du continu et qui est devenue essentielle dans la théorie des ensembles.

Avec cette méthode et la notion de classe le système axiomatique de la théorie des ensembles semble totalement satisfaisant et adéquat aux intuitions de Cantor mais la question se pose de savoir s'il est complet. Une réponse négative est apportée en 1930 par Gödel qui au congrès international des mathématiques de Königsberg annonce son premier théorème d'incomplétude : dans n'importe quelle théorie récursivement axiomatisable cohérente et capable de « formaliser l'arithmétique » on peut construire un énoncé arithmétique qui ne peut être ni prouvé ni réfuté dans cette théorie. Von Neumann fut alors l'un des rares à comprendre ce résultat et ses conséquences en particulier pour le programme de Hilbert auquel il adhérait comme beaucoup de mathématiciens de l'époque. Il fut capable dans le mois qui suivit la conférence de proposer à Gödel la conséquence suivante de son théorème : les systèmes axiomatiques sous des conditions analogues sont incapables de démontrer leur propre consistance. C'est le second théorème d'incomplétude de Gödel que cependant ce dernier connaissait déjà . Il est probable que von Neumann fut pour beaucoup dans la reconnaissance des travaux de Gödel et il fut toujours d'une grande aide pour ce dernier.

On doit aussi à von Neumann la notion d'ensemble transitif ainsi qu'une définition précise et simple de la notion de nombre ordinal en théorie des ensembles qui permet en particulier la construction des entiers naturels (on parle alors d'ordinal de von Neumann ou d'entier de von Neumann).


À la mécanique quantique

En 1900 David Hilbert présente sa liste des 23 problèmes dont le sixième porte sur l'axiomatisation de la physique. Dans les années 1930 la mécanique quantique est peu acceptée par les physiciens pour des raisons tout autant philosophiques que techniques. D'un côté le non-déterminisme quantique n'a pas été réduit en dépit des efforts d'Albert Einstein d'un autre côté la théorie est sous-tendue par deux formalisations heuristiques concurrentes et équivalentes avec d'une part la formalisation matricielle de Werner Heisenberg et d'autre part l'approche par les équations différentielles ondulatoires d'Erwin Schrödinger. Il manque une formulation mathématique unique unificatrice et satisfaisante de la théorie.

Von Neumann en 1926 s'attaque à l'axiomatisation de la mécanique quantique et réalise rapidement qu'un système quantique peut être considéré comme un vecteur dans un espace de Hilbert analogue de dimension 6N (où N est le nombre de particules trois coordonnées spatiales et trois coordonnées canoniques). Les quantités physiques traditionnelles (position et énergie) peuvent être remplacées par des opérateurs linéaires dans ces espaces.

La physique quantique est désormais réductible aux mathématiques des opérateurs hermitiens linéaires dans un espace de Hilbert. Par exemple le fameux principe d'incertitude de Heisenberg selon lequel on ne peut déterminer à la fois la position et la vitesse d'une particule équivaut à la non-commutativité des deux opérateurs correspondants.

Cette formulation mathématique réconcilie Heisenberg et Schrödinger et von Neumann publie en 1932 son classique Les Fondements mathématiques de la mécanique quantique (Mathematische Grundlagen der Quantenmechanik ). Si cette axiomatisation plaît énormément aux mathématiciens pour son élégance les physiciens lui préfèrent celle de Paul Dirac publiée en 1930 et qui s'appuie sur une étrange fonction la fonction δ de Dirac (laquelle est en fait une distribution au sens que formalisera Laurent Schwartz quelques années plus tard). Cette théorie sera durement critiquée par von Neumann.


À l'économie

Jusqu'aux années 1930 l'économie (du moins les courants majeurs d'alors) utilise un grand nombre de données chiffrées mais sans réelle rigueur scientifique. Elle ressemble à la physique du XVIIe siècle : dans l'attente d'un langage et d'une méthode scientifique pour exprimer et résoudre ses problèmes. Alors que la physique classique a trouvé la solution dans le calcul infinitésimal von Neumann propose pour l'économie dans un souci axiomatique qui le caractérise la théorie des jeux et la théorie de l'équilibre général.

Sa première contribution significative en 1928 est le théorème du minimax qui énonce que dans un jeu à somme nulle avec information parfaite (chaque joueur connaît les stratégies ouvertes à son adversaire et leurs conséquences) chacun dispose d'un ensemble de stratégies privilégiées (« optimales »). Entre deux joueurs rationnels il n'y a rien de mieux à faire pour chacun que choisir une de ces stratégies optimales et s'y tenir.

Von Neumann améliore par la suite sa théorie pour y inclure les jeux avec asymétrie d'information et les jeux avec plus de deux joueurs. Son travail aboutit en 1944 avec la publication en collaboration avec Oskar Morgenstern du célèbre  : Theory of Games and Economic Behavior[N 5]

Sa seconde contribution essentielle à la science économique est la solution formulée en 1937 d'un problème formulé en 1874 par Léon Walras concernant l'existence d'un point d'équilibre dans les modèles mathématiques d'un marché basé sur l'offre et la demande. Il trouve la solution en appliquant le théorème du point fixe de Brouwer. L'importance toujours actuelle des travaux sur le problème de l'équilibre général et la méthodologie sous-jacente des théorèmes de point fixe est soulignée par l'attribution du « prix Nobel » d'économie en 1972 à Kenneth Arrow et 1983 à Gérard Debreu.


À l'armement atomique

En 1937 peu après l'obtention de la citoyenneté américaine il s'intéresse aux mathématiques appliquées devient rapidement l'un des principaux experts en matière d'explosifs et est conseiller de l'US Navy. Le 7 décembre 1941 le président Roosevelt autorise la fabrication d'une bombe atomique. On forme une équipe pluridisciplinaire avec la collaboration de différents départements des universités Columbia de Californie et de Chicago et von Neumann y est intégré.

L'une de ses découvertes tient à ce que des bombes de « large dimension » ont un effet dévastateur plus important si elles explosent en hauteur plutôt qu'au sol[N 6]. Cela sera mis en pratique lors de l'explosion des premières bombes atomiques les 6 et 9 août 1945 von Neumann ayant calculé l'altitude précise pour maximiser l'étendue des dommages causés.

Dans le cadre du projet Manhattan il est chargé du calcul des lentilles explosives nécessaires à la compression du noyau en plutonium de l'essai Trinity et de Fat Man la bombe A larguée sur Nagasaki.

À cette époque il fait également partie du comité chargé de sélectionner les cibles pour la bombe atomique. Le choix initial de von Neumann — le centre de Kyoto capitale culturelle du Japon — est alors écarté par Henry Stimson le ministre de la guerre sur la consigne formelle du président Roosevelt d'éviter de bombarder Kyoto ville qui l'avait ébloui lors d'une visite avant la Seconde Guerre mondiale.

Après-guerre Robert Oppenheimer faisant la remarque que les physiciens avaient « connu le péché » en développant la bombe atomique se voit répliquer par von Neumann « Parfois on confesse un péché pour s'en attribuer le crédit »[réf. nécessaire]. Von Neumann ne manifesta aucun regrets en public quant à son travail sur l'armement nucléaire[réf. nécessaire].

Il travaille ensuite au développement de la bombe H. Si le dessin qu'il conçoit avec Klaus Fuchs n'est pas celui retenu il est reconnu qu'il est un pas dans la bonne direction sur la voie poursuivie par Edward Teller et Stanislaw Ulam.

Pendant la guerre le Laboratoire national de Los Alamos réunit l'élite intellectuelle juive centre-européenne qui a fui le nazisme et particulièrement l'élite intellectuelle juive hongroise avec outre John von Neumann Paul Erdős Eugene Wigner Edward Teller Leó Szilárd ou Dennis Gabor. Une blague circule alors dans les couloirs selon laquelle non seulement les martiens existent et qu'ils sont doués d'une intelligence surhumaine mais ils prétendent venir d'un pays inconnu la Hongrie et parlent tous une langue inintelligible au reste de l'humanité.

Le développement des bombes A et H nécessite un nombre très important de calculs en ayant recours aux ordinateurs. C'est surtout dans ce domaine que l'apport de von Neumann va être essentiel .


À l'informatique

Von Neumann a donné son nom à l'architecture de von Neumann utilisée dans la quasi-totalité des ordinateurs modernes l'apport d'autres collaborateurs de l'EDVAC en est par conséquent grandement minimisé (on citera J. Presper Eckert Grace Hopper et John William Mauchly parmi d'autres). Cela est dû au fait qu'il est en 1945 le rapporteur des travaux pionniers en la matière (First Draft of a Report on the EDVAC). Le modèle de calculateur à programme auquel son nom reste attaché et qu'il attribuait lui-même à Alan Turing possède une unique mémoire qui sert à conserver les instructions et les données. Ce modèle extrêmement innovant pour l'époque est à la base de la conception de la plupart des ordinateurs conçus aujourd'hui.

Les ordinateurs construits avec l’architecture de von Neumann sont constitués de quatre composants :

l’unité arithmétique et logique (UAL) ou unité de traitement qui effectue les opérations de base ;
l’unité de contrôle qui est chargée du séquençage des opérations ;
la mémoire qui contient à la fois les données et le programme qui indique à l’unité de contrôle quels calculs faire sur ces données. La mémoire se divise en mémoire vive (programmes et données en cours de fonctionnement) et mémoire de masse (programmes et données de base de la machine) ;
les dispositifs d’entrées-sorties qui permettent de communiquer avec le monde extérieur .
Depuis la publication du First draft of a report on the EDVAC par John von Neumann en juin 1945 la paternité de la machine de von Neumann est toutefois discutée. Les opinions divergent. Plusieurs pionniers sont mentionnés : Presper Eckert et John Mauchly (Université de Pennsylvania Philadelphia) John von Neumann (Institute for Advanced Study Princeton) Alan Turing (Université de Cambridge) et Konrad Zuse (Berlin). Un aperçu détaillé sur cette question litigieuse se trouve dans l’œuvre suivante : (de) Herbert Bruderer Konrad Zuse und die Schweiz : Wer hat den Computer erfunden? Charles Babbage Alan Turing und John von Neumann Munich Oldenbourg Verlag 2012 224 p. (ISBN 978-3-486-71366-4). Un débat intéressant en cette matière s'est déroulé également entre Nancy Stern et Alice Burks.

Von Neumann est le premier à envisager la notion de singularité technologique dans les années 1950 .


À la modélisation par automates cellulaires

L'activité de von Neumann ne se limite pas au domaine militaire après la guerre. Au cours de cette deuxième étape de sa vie il travaille sur le thème du constructeur universel faisant ainsi écho à son intérêt pour la reproduction l'un des grands secrets de sa vie. Il veut montrer qu'elle ne répond pas à d'étranges lois cachées mais à des règles mathématiques qui constituent le véritable langage de la nature.

Avec Stanislaw Ulam il est également à l'origine du concept novateur d'automate cellulaire. Ayant échoué dans la conception physique d'automates auto-reproducteurs il travaille sur ce problème de manière purement mathématique en étudiant comment un processus d'auto-reproduction peut être simulé sur une grille discrète où chaque case ou cellule ne peut avoir qu'un nombre restreint d'états. Ces travaux seront publiés dans son œuvre posthume Theory of Self-Reproducing Automata ; ils ont notamment inspiré à Conway le modèle du jeu de la vie. Dans une certaine mesure ce modèle préfigure celui de la reproduction cellulaire et de l'ADN .


À l'analyse fonctionnelle

John von Neumann rencontre à l'Université de Göttingen David Hilbert[N 7] le mathématicien qui a le plus influencé sa carrière scientifique .


Œuvres


Fondements mathématiques de la mécanique quantique « The Mathematical Foundations of Quantum Mechanics » éd. Jacques Gabay 1992 (ISBN 978-2-87647-047-7).
Le Cerveau et l'ordinateur Flammarion coll. « Champs » 1996 (ISBN 978-2-08-081284-1).
Théorie générale et logique des automates Champ Vallon 1998 (ISBN 978-2-87673-232-2).
(en) Avec Oskar Morgenstern Theory of Games and Economic Behavior Princeton University Press 1944 - publié en français sous le titre Théorie des jeux et comportements économiques université des sciences sociales de Toulouse 1977.
Theory of Self-Reproducing Automata University of Illinois Press 1966 (ISBN 978-0-598-37798-2).

explicación simple


John von Neumann (János Lajos Neumann) (ˈnojmɒn ˈjaːnoʃ ˈlɒjoʃ János Lajos Neumann en hongrois) né le 28 décembre 1903 à Budapest et mort le 8 février 1957 à Washington est un mathématicien et physicien américano-hongrois. Il a apporté d'importantes contributions en mécanique quantique en analyse fonctionnelle en théorie des ensembles en informatique en sciences économiques et dans beaucoup d'autres domaines des mathématiques et de la physique. Il a de plus participé aux programmes militaires américains.

 


The sections of the vision blog are various fr , worked to serve the visitor to make it easier for him to browse the site smoothly and take information. ... last modified today 13/05/2022